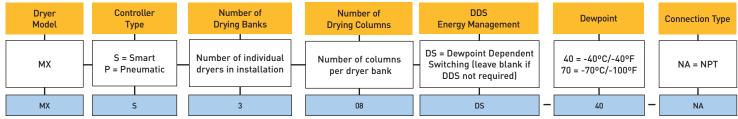


Parker MX heatless regeneration compressed air dryer. Innovative engineering and technology.

Providing clean, dry compressed air in accordance with all editions of ISO8573-1, the international standard for compressed air quality.

MODULAR CONSTRUCTION

Allows greater flexibility, dryers can be multi-banked to provide extra compressed air drying capacity should demand increase. This feature allows 100% standby at a fraction of the cost of alternative construction methods and also allows individual dryers to be easily isolated for routine service work, while maintaining the plant's clean, dry air supply.


- Compact, lightweight design
 - High tensile extruded aluminium columns and manifolds reduce the footprint of the dryer, allowing for easy installation and maintenance. Fully corrosion protected inside and out and covered by a 10 year guarantee on the pressure envelope.
-) International approval standards
 - Due to the column design, MX is exempt from the pressure vessel inspection requirements of ASME meaning the elimination of costly annual checks. MX is also fully compliant with PED/ CSA/UL/CRN approvals.
- > Consistent dewpoint performance
- -40°F and -100°F dewpoint models will inhibit the growth of micro-organisms as well as eliminate downstream corrosion. Snowstorm desiccant filling provides 100% utilization of the dryer bed, preventing air channelling, significantly reducing attrition which could lead to blocked filters and loss of dewpoint.
- Quiet operation

Low operational noise levels of <75 db (A) helps to support a safe working environment.

- Flexible control options
 - MXSmart offers users flexibility and additional advanced features in electrical operation to meet plant requirements. MXP models provide ATEX Group II, category 2GD, T6 approved pneumatic control.
- Energy Saving Technology (DDS)
 - This option automatically adapts dryer operation to the ambient inlet conditions and compressed air demand, ensuring optimum energy consumption and full utilization of the desiccant material.
- Compressor synchronization
 - When the dryer is installed prior to the air receiver, MX can provide a purge economy feature that prevents the dryer from carrying out its regeneration cycle when the compressor goes off load. This saves energy and money with the elimination of the use of unnecessary purge air. Normal drying cycles automatically resumes once the compressor re-starts.

Product Selection

Example Dryer Model MXS308DS-40-NA

Flow Rates

Stated flows are for operation at 7 bar g (100 psi g) with reference to 68°F (20°C), 14.5 psia (1 bar a), 0% relative water vapor pressure. For flows at other pressures apply the correction factors shown.

	Model	Port Connection	cfm	L/s	m³/min	m³/hr
	MX □ 102C	2" NPT	240	113	6.8	408
	MX □ 103C	2" NPT	360	170	10.2	612
ank	MX □ 103	2" NPT	450	213	12.8	765
Single Bank	MX □ 104	2 ¹ / ₂ " NPT	600	283	17	1020
Sing	MX □ 105	2 ¹ / ₂ " NPT	750	354	21	1275
	MX □ 106	2 ¹ / ₂ " NPT	900	425	26	1530
	MX □ 107	2 ¹ / ₂ " NPT	1050	496	30	1785
	MX □ 108	2 ¹ / ₂ " NPT	1200	567	34	2040
	MX □ 205	2 ¹ / ₂ " NPT	1500	708	43	2550
	MX □ 206	2 ¹ / ₂ " NPT	1800	850	51	3060
ank	MX □ 207	2 ¹ / ₂ " NPT	2100	992	60	3570
Multi-Bank	MX □ 208	2 ¹ / ₂ " NPT	2400	1133	68	4080
Mu	MX □ 306	2 ¹ / ₂ " NPT	2700	1275	77	4590
	MX □ 307	2 ¹ / ₂ " NPT	3150	1488	89	5355
	MX □ 308	2 ¹ / ₂ " NPT	3600	1700	102	6120

= S (Smart) / P (Pneumatic)

Correction Factor

Temperature Correction Factor CFT										
	°C	25	30	35	40	45	50			
Maximum Inlet	°F	77	86	95	104	113	122			
Temperature	CFT	1.00	1.00	1.00	1.04	1.14	1.37			

Pressure Correction Factor CFP											
	bar g	4	5	6	7	8	9	10	11	12	13
Minimum Inlet Pressure	psi g	58	73	87	100	116	131	145	160	174	189
intet i ressure	CFP	1.60	1.33	1.14	1.00	0.89	0.80	0.73	0.67	0.62	0.57

Dewpoint Correction Factor CFD									
	PDP °C	-20	-40	-70					
Required Dewpoint	PDP °F	-4	-40	-100					
Dewpoint	CFD	0.91	1.00	1.43					

Dryer Selection

To correctly select a dryer model, the flow rate of the dryer must be adjusted for the minimum operating pressure and, maximum operational temperature of the system. If the dewpoint required is different to the standard dewpoint of the dryer then the flow rate must also be adjusted for the required outlet dewpoint.

- 1. Obtain the minimum operating pressure, maximum inlet temperature and maximum compressed air flow rate at the inlet of the dryer.
- Obtain the outlet dewpoint required.
- $2. \ \ Select \ correction \ factor \ for \ maximum \ inlet \ temperature \ from \ the \ CFT \ Table \ [always \ round \ up \ e.g. \ for \ 107°F \ use \ 113°F \ correction \ factor]$
- $3. \ \ \text{Select correction factor for minimum inlet pressure from the CFP table (always round down e.g. for 92 psi use 87 psi correction factor)}$
- 4. Select correction factor for required outlet dewpoint from the CFD table $\,$
- 5. Calculate minimum drying capacity
- Minimum Drying Capacity = Compressed Air Flow x CFT x CFP x CFD
- 6. Using the minimum drying capacity, select a dryer model from the flow rate tables above (dryer selected must have a flow rate equal to or greater than the minimum drying capacity) If the minimum drying capacity exceeds the maximum values of the models shown within the tables, please contact Parker for advice regarding larger multi-banked dryers.

Dryer Performance

Model	(Dewpoint Standard)	ISO 8573-1:2010	Dewpoint (Option 1)		ISO 8573-1:2010 Classification	Dewpoint (Option 2)		ISO 8573-1:2010 Classification
	°C	٥F	Classification (standard)	°C	°F	(Option 1)	°C	٥F	(Option 2)
мх□	-40	-40	Class 2	-70	-100	Class 1	-20	-4	Class 3

= S (Smart) / P (Pneumatic)

Technical Data

Model		perating Pressure		perating Pressure		perating perature		Operating perature		Ambient perature	Electrical	I hread ('onnections	Noise Level
	bar g psi g bar g psi g °C °F °C °F °C °F		dB (A)										
MXS	4	58	13	190	2	35	50	122	55	131	85 - 265 V 1ph 50/60Hz	BSPP or NPT	<75
MXP	4	58	13	190	2	35	50	122	55	131	N/A	BSPP or NPT	<75

Controller Options

					Function				
Controller Options	Power on Indication	Fault Indication	Display Fault Condition Values	Service Interval Indication	Service Countdown Timers	Comfigurable Alarm Settings	Remote Volt Free Alarm Contacts	Filter Service Timer	DDS Energy Management System
Smart	•	•		•			•		
Smart DDS	•	•		•			•		•

Weights and Dimensions

Model	Port	Height (H)		Width (W)		Depth (D)		Weight	
Modet	Connection	mm	ins	mm	ins	mm	ins	kg	lbs
MX □ 102C	G 2	1647	64.8	687	27.0	550	21.7	235	518
MX □ 103C	G 2	1647	64.8	856	33.7	550	21.7	316	696
MX □ 103	G 2	1892	74.5	856	33.7	550	21.7	355	782
MX □ 104	G 2	1892	74.5	1025	40.3	550	21.7	450	992
MX □ 105	G 21/2	1892	74.5	1194	47.0	550	21.7	543	1197
MX □ 106	G 21/2	1892	74.5	1363	53.6	550	21.7	637	1404
MX □ 107	G 21/2	1892	74.5	1532	60.3	550	21.7	731	1611
MX □ 108	G 21/2	1892	74.5	1701	67.0	550	21.7	825	1818

= S (Smart) / P (Pneumatic)

Recommended Filtration

Model	Port Connection	Inlet General Purpose Pre-filter	Inlet High Efficiency Filter	Outlet Dust Filter
MX□102C	2"	A0P040H□FX	AAP040H <mark>□</mark> FX	A0P040H <mark>□</mark> MX
MX□103C	2"	A0P040H <mark>□</mark> FX	AAP040H <mark>□</mark> FX	A0P040H <mark>□</mark> MX
MX□103	2"	A0P045H□FX	AAP045H <mark>□</mark> FX	A0P045H <mark>□</mark> MX
MX□104	21/2"	A0P045H□FX	AAP045H <mark>□</mark> FX	A0P045H <mark>□</mark> MX
MX□105	21/2"	A0P050I □ FX	AAP050I <mark>□</mark> FX	A0P050I <mark>□</mark> MX
MX□106	21/2"	A0P055I □ FX	AAP055I □ FX	A0P055I <mark>□</mark> MX
MX□107	21/2"	A0P055I □ FX	AAP055I □ FX	A0P055I □ MX
MX□108	21/2"	A0P055I □ FX	AAP055I □ FX	A0P055I □ MX

= S (Smart) / P (Pneumatic)

= G (BSPP) / N (NPT)

Adsorption dryers are designed to remove water vapor from compressed air. For optimum performance and to deliver air quality in accordance with all editions of ISO8573-1, liquid water, oil and solid particulate must be first be removed using Parker domnick hunter OIL-X Grade AOP, AAP filters. Grade AOP filters (with manual drain) should also be fitted to the outlet of the dryer for solid particulate removal.

Worldwide Filtration Manufacturing Locations

North America

Compressed Air Treatment

Industrial Gas Filtration and Generation Division

Lancaster, NY 716 686 6400 www.parker.com/igfg

Haverhill, MA 978 858 0505 www.parker.com/igfg

Engine Filtration

Racor

Modesto, CA 209 521 7860 www.parker.com/racor

Holly Springs, MS 662 252 2656 www.parker.com/racor

Hydraulic Filtration

Hydraulic & Fuel Filtration

Metamora, OH 419 644 4311 www.parker.com/hydraulicfilter

Laval, QC Canada 450 629 9594 www.parkerfarr.com

Velcon Colorado Springs, CO 719 531 5855 www.velcon.com

Process Filtration

domnick hunter Process Filtration SciLog

Oxnard, CA 805 604 3400 www.parker.com/processfiltration

Water Purification

Village Marine, Sea Recovery, Horizon Reverse Osmosis

Carson, CA 310 637 3400 www.parker.com/watermakers

Europe

Compressed Air Treatment

domnick hunter Filtration & Separation

Gateshead, England +44 (0) 191 402 9000 www.parker.com/dhfns

Parker Gas Separations

Etten-Leur, Netherlands +31 76 508 5300 www.parker.com/dhfns

Hiross Airtek

Essen, Germany +49 2054 9340 www.parker.com/hzfd

Padova, Italy +39 049 9712 111 www.parker.com/hzfd

Engine Filtration & Water Purification

Racor

Dewsbury, England +44 (0) 1924 487 000 www.parker.com/rfde

Racor Research & Development

Stuttgart, Germany +49 (0)711 7071 290-10

Hydraulic Filtration

Hydraulic Filter

Arnhem, Holland +31 26 3760376 www.parker.com/hfde

Urjala, Finland +358 20 753 2500

Condition Monitoring Parker Kittiwake

West Sussex, England +44 (0) 1903 731 470 www.kittiwake.com

Process Filtration

domnick hunter Process Filtration Parker Twin Filter BV

Birtley, England +44 (0) 191 410 5121 www.parker.com/processfiltration

Asia Pacific

Australia

Castle Hill, Australia +61 2 9634 7777 www.parker.com/australia

China

Shanghai, China +86 21 5031 2525 www.parker.com/china

India

Chennai, India +91 22 4391 0700 www.parker.com/india

Parker Fowler

Bangalore, India +91 80 2783 6794 www.johnfowlerindia.com

Japan

Tokyo, Japan +81 45 870 1522 www.parker.com/japan

Korea

Hwaseon-City +82 31 359 0852 www.parker.com/korea

Singapore

Jurong Town, Singapore +65 6887 6300 www.parker.com/singapore

Thailand

Bangkok, Thailand +66 2186 7000 www.parker.com/thailand

Latin America Parker Comercio Ltda.

Filtration Division Sao Paulo, Brazil +55 12 4009 3500 www.parker.com/br

Pan American Division

Miami, FL 305 470 8800 www.parker.com/panam

Africa

Aeroport Kempton Park, South Africa +27 11 9610700 www.parker.com/africa

© 2019 Parker Hannifin Corporation. Product names are trademarks or registered trademarks of their respective companies

Parker Hannifin Corporation Industrial Gas Filtration and Generation Division 4087 Walden Avenue Lancaster, NY 14086 phone 800 343 4048 www.parker.com/igfg

